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Quantum teleportation, a technique for transferring quantum states from one

place to another arbitrarily distant place without crossing the intervening space,

was first conceptualized by Bennett et al. in 1993. Subsequent experiments, such

as Boschi et al. in 1998, have confirmed their predictions by successfully tele-

porting the polarization states of photons. The theory has since been expanded

to include systems of continuous variables, and experiments have succeeded in

teleporting the electronic states of atoms.

INTRODUCTION

Teleportation, a term originally coined by science fiction, refers to a hypothetical tech-

nology that can transport objects (or, eventually, people) nearly instantaneously from one

location to another without sending the object through the intervening space. Classically,

one might approach this problem by attempting to record the states of all the particles con-

stituting the object to be teleported; that information could then be transmitted to a distant

receiver and used to reconstitute the object out of raw materials available at the receiver.

For many years this approach to teleportation was considered implausible because of quan-

tum mechanical concerns. For instance, a teleportation device must somehow record the

precise positions and momenta of all atoms in an object in order to reconstruct the object on

the other side. This simultaneous measurement of non-commuting observables is forbidden

by the uncertainty principle. A more fundamental problem exists, though, which is evident

even in situations where the uncertainty principle is not directly applicable. To illustrate

this point, consider the teleportation of a two-state system, such as the polarization state of

a single photon:

|ϕ〉 = α |H〉+ β |V 〉 (where |α|2 + |β|2 = 1) (1)
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Here, |H〉 (|V 〉) represents horizontal (vertical) polarization. The polarization state of

the photon is fully described by the complex numbers α and β, but attempting to measure

the polarization simply results in the collapse of the state into |H〉, |V 〉, or some linear

combination of those bases (as in the case of a polarizing beamsplitter set at a 45◦ angle).

This collapse generally yields only one bit of information about the state, which is inadequate

because the numbers α and β contain a literally infinite amount of information. Only if

many copies of the state |ϕ〉 exist can repeated measurements place statistical bounds on

the values of α and β. This loophole suggests a method of determining the state (albeit an

arduous one): take the state to be teleported and copy it many times, then measure each

copy separately to produce an estimate of α and β whose accuracy is limited only by the

number of copies made. Unfortunately, the no-cloning theorem1 from quantum information

theory strictly prohibits copying unknown quantum states, which would seem to suggest that

teleporting even this simple system is impossible.

THEORY

In 1993, a solution to this dilemma was proposed2 by six co-authors, collectively known

as BBCJPW. The BBCJPW protocol uses a property of quantum mechanics called "entan-

glement" to teleport a two-state system. Quantum entanglement was first discovered by

Einstein, Podolsky and Rosen in the famous 1935 "EPR" paper3, though Einstein regarded

it as an unphysical prediction which suggested the existence of "hidden variables" that he

believed would form the basis of a more complete theory which would supersede quantum

mechanics.

A pair of particles is said to be entangled if the quantum state of the pair cannot be

separated into two factors, each containing terms related to a single particle. In other

words, it’s impossible to fully describe one particle without referring to the other particle.

For instance, the following singlet state is entangled:

∣∣∣Ψ(−)12

〉
=

1√
2
(|H1〉 |V2〉 − |V1〉 |H2〉) (2)
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The distinctive feature of quantum entanglement is that measurements performed on one

particle are correlated with the other particle’s measurements regardless of their separation

distance. For example, multiplying eq. 2 on the left by 〈H1| results in particle 2’s collapse

into a state of definite vertical polarization:

〈H1
∣∣∣Ψ(−)12

〉
=

1√
2
|V2〉 (3)

Physically, this means that if particle 1 is found to be horizontally polarized, a mea-

surement on particle 2 is certain to reveal that it is vertically polarized, even if the second

measurement is performed so soon after the first that special relativity prevents particle 2

from "knowing" about the results of particle 1’s measurement. At first glance, this phe-

nomenon seems like a clear example of faster-than-light correlations, but Einstein’s idea of

"hidden variables" suggests a more radical explanation: there really is no such thing as

a quantum superposition. In other words, only one term in eq. 2 is "real", the other

term arises from the incompleteness of quantum theory. If the first particle was always

horizontally polarized, despite our inability to describe this "hidden reality" with quantum

mechanics, then the fact that the second one is vertically polarized is just a consequence of

the conservation of angular momentum– it involves no "spooky action at a distance."

Bell considered4 the possibility of hidden variables three decades later, and found that

quantum mechanics and "local hidden variable theories" predict different results under cer-

tain circumstances. Local hidden variable theories assert that the state of a particle is

controlled by a set of variables that depend only on events in the past light cone of that

particle. The departure from quantum mechanics arises when, instead of measuring the

polarization of each entangled particle in the manner of eq. 3, each particle is measured in

a randomly oriented basis. This deviation has come to be known as Bell’s Inequality, and

experiments5,6 have since confirmed the predictions of quantum mechanics. Bell’s Inequality

is now used in an experimental context to verify that two particles are in fact entangled.

The BBCJPW teleportation protocol requires that the sender (Alice) and the receiver
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(Bob) have previously shared two halves of an entangled state, as described in eq. 2. Particle

1 (2) is Bob’s (Alice’s) half of the EPR pair, and particle 3, which Alice wishes to teleport to

Bob, is in the state |ϕ3〉 as defined in eq. 1. Particle 3 and the entangled pair are initially

in the pure product state

∣∣∣Ψ(−)12

〉
|ϕ3〉 =

1√
2
[(|H1〉 |V2〉 − |V1〉 |H2〉) (α |H3〉+ β |V3〉)] (4)

Alice now performs a simultaneous complete measurement on the particles in her posses-

sion (particles 2 and 3) in the Bell basis which consists of the basis vectors

∣∣∣Ψ(±)23

〉
=

1√
2
(|H2〉 |V3〉 ± |V2〉 |H3〉) (5a)

∣∣∣Φ(±)23

〉
=

1√
2
(|H2〉 |H3〉 ± |V2〉 |V3〉) (5b)

This measurement has the effect of collapsing the state given in eq. 4 onto one of the

four Bell basis vectors given in eq. 5. Note that the Bell basis is orthonormal for particles

2 and 3, and can thus be inverted to obtain

|H2〉 |V3〉 =
1√
2

(∣∣∣Ψ(+)23

〉
+
∣∣∣Ψ(−)23

〉)
(6a)

|V2〉 |H3〉 =
1√
2

(∣∣∣Ψ(+)23

〉
−
∣∣∣Ψ(−)23

〉)
(6b)

|H2〉 |H3〉 =
1√
2

(∣∣∣Φ(+)23

〉
+
∣∣∣Φ(−)23

〉)
(6c)

|V2〉 |V3〉 =
1√
2

(∣∣∣Φ(+)23

〉
−
∣∣∣Φ(−)23

〉)
(6d)

In order to express the full state of all three particles in the new basis, substitute eq. 6

into eq. 4 to obtain

∣∣∣Ψ(−)12

〉
|ϕ3〉 =

1

2






(α |H1〉 − β |V1〉)
∣∣∣Ψ(+)23

〉
+ (−α |H1〉 − β |V1〉)

∣∣∣Ψ(−)23

〉

+(−α |V1〉+ β |H1〉)
∣∣∣Φ(+)23

〉
+ (−α |V1〉 − β |H1〉)

∣∣∣Φ(−)23

〉




 (7)
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Notice that four factors in eq. 7 look similar to the original state |ϕ3〉, except that the

relevant factors α and β now multiply kets describing particle 1. In fact, if we identify

α |H1〉+ β |V1〉 as |ϕ1〉, eq. 7 takes on a more suggestive form

∣∣∣Ψ(−)12

〉
|ϕ3〉 =

1

2










1 0

0 −1




 |ϕ1〉

∣∣∣Ψ(+)23

〉
+





−1 0

0 −1




 |ϕ1〉

∣∣∣Ψ(−)23

〉

+





0 −1

1 0




 |ϕ1〉

∣∣∣Φ(+)23

〉
+






0 −1

−1 0




 |ϕ1〉

∣∣∣Φ(−)23

〉






(8)

Alice’s measurement collapses the state onto one of these four terms. If Bob knows the

result of Alice’s measurement, he could multiply his state by the inverse of the relevant matrix

in eq. 8, thus leaving him with the state |ϕ1〉. This new state is identical to Alice’s state |ϕ3〉

except it is in Bob’s lab which is arbitrarily far away from Alice. The fact that Bob needs

to know which Bell basis state was measured by Alice limits the maximum speed at which

teleportation can be completed to the speed of light. Notice that the teleportation process

does not transport energy or matter, it simply transfers quantum states from one particle

to another. Calling this state transfer "teleportation" is valid only for indistinguishable

particles, where particles in identical states are impossible to tell apart even in principle.

Also, the no-cloning theorem is not violated because the original particle is no longer in the

state |ϕ3〉, it is now in one of the Bell basis states along with particle 2.

EXPERIMENT

The first experimental demonstration7 of quantum teleportation of photons was per-

formed in 1997, but the setup was only able to distinguish one of the four Bell basis states

in eq. 5, so teleportation was only successful with at most 25% of the incoming photons.

In 1998, a team led by D. Boschi overcame8 this limitation, with the caveat that the state

to be teleported was not an external photon separate from the EPR pair. Instead of using

polarization entanglement, the Boschi experiment used k-vector (or path) entanglement, and
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imprinted the state to be teleported on the polarization of the photon that was sent to Alice.

This state cannot be determined by Alice, and in principle the experiment could be extended

to teleport an external photon’s polarization state by swapping its polarization with that of

Alice’s EPR photon. Their experimental setup is shown in figure 1.

Fig. 1 - Boschi teleportation experiment setup (adapted from [8])

The EPR pair is generated by type II degenerate parametric down-conversion9 in the

β-barium borate (BBO) crystal in the center of figure 1. In other words, the ultraviolet

pumping laser (UV) shines through the BBO crystal where nonlinearities in the crystal’s

electric susceptibility cause some of these photons to split into two photons while conserving

energy and momentum. By cutting the crystal to the appropriate size and shape, the down-

converted photons leave the crystal in different directions (paths a1 and b1 in figure 1) with

opposite polarizations, in the state given by eq. 9.

∣∣∣Ψ(+)12

〉
=

1√
2
(|H1〉 |V2〉+ |V1〉 |H2〉) (9)
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This polarization entanglement is then converted to path entanglement by placing calcite

crystals (C) in the paths of both outgoing photons. Calcite is birefringent, so photons with

different polarizations emerge from the calcite in distinct paths. After each calcite crystal,

a mirror blocks the path taken by the horizontal polarization, reflecting its amplitude back

to Bob through both the calcite and BBO crystals. This converts the initial state in eq. 9

into the following state:

1√
2
(|a1〉 |a2〉+ |b1〉 |b2〉) |V1〉 |H2〉 (10)

Particle 1(2) now refers to Alice’s (Bob’s) photon. The kets |a1〉,|a2〉,|b1〉, and |b2〉 refer

to the paths as labelled in figure 1. Notice that the polarizations are no longer entangled

because the particle heading towards Alice (Bob) is definitely vertically (horizontally) polar-

ized. The entanglement now involves the path taken by each photon- if Alice’s photon travels

through path a1 (b1) then Bob’s photon is certain to be in path a2 (b2). At this point the

"Preparer" uses a set of Fresnel rhomb polarization rotators (R) to rotate the polarization

of Alice’s photon (acting identically in both paths) through an angle θ. The polarization

of Alice’s photon is now in a state given by eq. 1 where α = sin(θ) and β = cos(θ). The

complete state is now

1√
2
(|a1〉 |a2〉+ |b1〉 |b2〉) (α |H1〉+ β |V1〉) |H2〉 (11)

In analogy with the original BBCJPW protocol, Alice performs a complete measurement

in a new basis given by

∣∣c(±)
〉
=

1√
2
(|a1〉 |V1〉 ± |b1〉 |H1〉) (12a)

∣∣d(±)
〉
=

1√
2
(|a1〉 |H1〉 ± |b1〉 |V1〉) (12b)

Once again, this basis is orthonormal, and can be inverted and substituted into eq. 11,
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which results in

1

2






(α |a2〉+ β |b2〉) |H2〉
∣∣c(+)

〉
+ (α |a2〉 − β |b2〉) |H2〉

∣∣c(−)
〉

+(β |a2〉+ α |b2〉) |H2〉
∣∣d(+)

〉
+ (β |a2〉 − α |b2〉) |H2〉

∣∣d(−)
〉




 (13)

Now Alice has to measure her photon in such a way that all four bases in eq. 12 are

distinguishable. To do this, she first rotates the polarization of path b1 by 90◦ using a

half-wave plate, which changes |b1〉 |H1〉 to |b1〉 |V1〉 and |b1〉 |V1〉 to -|b1〉 |H1〉. This rotation

effectively applies the following transformation to the basis in eq. 12.

∣∣c(±)
〉
−→ 1√

2
(|a1〉 ± |b1〉) |V1〉 (14a)

∣∣d(±)
〉
−→ 1√

2
(|a1〉 ∓ |b1〉) |H1〉 (14b)

Both paths then hit a non-polarizing 50:50 beam splitter (BS) and are either reflected or

transmitted to the two polarizing beamsplitters (PBS), each with its own set of detectors.

The detectors labeled D⊥A± (DA±) are arranged so they detect only vertically (horizontally)

polarized light. Because of the rotation applied to path b1,
∣∣c(±)

〉
and

∣∣d(±)
〉
are distinguish-

able based on their polarization; a detected photon (or "click") at detector D⊥A± corresponds

to detection of
∣∣c(±)

〉
while a click at detector DA± corresponds to detection of

∣∣d(∓)
〉
. Distin-

guishing between
∣∣c(+)

〉
and

∣∣c(−)
〉
(or equivalently between

∣∣d(+)
〉
and

∣∣d(−)
〉
) is accomplished

by positioning BS so that the state 1√
2
(|a1〉+ |b1〉) interferes at BS in such a way as to send

it to detectors D⊥A+ and DA+, and vice-versa. In this manner all four Bell states can be

distinguished from each other based on which of the four detectors clicks.

Alice’s measurement thus collapses the state in eq. 13 into a single term as intended,

but the factor describing Bob’s photon is in superposition of paths instead of the desired

polarization superposition. To produce a polarization superposition, Bob inserts a half-wave

plate in path a2 to rotate its polarization from horizontal to vertical. Both paths a2 and b2

then hit a polarizing beamsplitter (PBSB) which reflects (transmits) amplitude from path
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a2 (b2) so that the amplitude from each path emerges in a single direction. The complete

state is now

1

2






(β |H2〉+ α |V2〉)
∣∣c(+)

〉
+ (−β |H2〉+ α |V2〉)

∣∣c(−)
〉

+(α |H2〉+ β |V2〉)
∣∣d(+)

〉
+ (−α |H2〉+ β |V2〉)

∣∣d(−)
〉




 (15)

If Bob is told the results of Alice’s measurement, he can now rotate the polarization of his

photon using a Fresnel rhomb polarization rotator (RB) to produce the state α |H2〉+β |V2〉.

However, because the goal of this experiment is simply to verify that Bob’s photon is in the

state predicted by eq. 15, RB is used to rotate the polarization through an angle θB that

leaves Bob’s photon vertically polarized, allowing it to pass through another PBS and hit

detector DB. Alternatively RB can be set to θ⊥B which rotates the photon an extra 90◦,

causing it to be reflected by the PBS and (in principle) eliminating the possibility of a click

at detector DB. The angle θB can be determined by examining the term in eq. 15 that

is indicated by Alice’s measurement. For instance suppose the Preparer has imprinted the

state θ = -120◦ (using a coordinate system where 0◦ is horizontal) onto Alice’s photon, and

that Alice’s detector DA+ clicks, indicating that the state has collapsed onto the
∣∣d(+)

〉
term.

Examining eq. 15, we see that the polarization of Bob’s photon is unchanged from Alice’s,

so he sets θB = 30◦ so that his photon arrives at DB. Using this scheme, teleportation

success can be confirmed by the coincidence count– the number of times two detectors click

simultaneously– between detector DB and one of Alice’s detectors (chosen based eq. 15 and

knowledge of the values θ and θB used to control R and RB).

The success of the teleportation is quantified by measuring the quantity S = |〈φ |φtel〉|2,

where |φ〉 (|φtel〉) is the original (teleported) state. To obtain S, the coincidence rate must

be measured when RB is set to θB (call this I‖) and when RB is set to θ⊥B (call this I⊥).
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These coincidence rates can be expressed as

I‖ = k |〈φ |φtel〉|2 (16a)

I⊥ = k |〈φ⊥ |φtel〉|2 (16b)

The constant "k" has units of s−1 and depends on factors which are identical for both

coincidence rates such as the detector efficiencies and the rate at which EPR pairs are

produced in the BBO crystal. The state |φ⊥〉 is used to refer to the fact that when RB is set

to θ⊥B, the measured coincidence rate is comparing the teleported state to the original state

after a 90◦ rotation. The initial and teleported states are normalized, so 〈φ |φtel〉 = sin(γ)

where γ is the angle between the states |φ〉 and |φtel〉. Add the two coincidence rates to

express S in terms of the coincidence rates:

I‖ + I⊥ = k
(
|sin(γ)|2 + |sin(γ + 90◦)|2

)
= k

(
sin2(γ) + cos2(γ)

)
= k (17a)

S = |〈φ |φtel〉|2 =
I‖

I‖ + I⊥
(17b)

Boschi calculated S for three equally spaced initial polarization states (-120◦, 0◦, 120◦),

running the experiment for 10 seconds at a time to collect approximately 500 coincidence

counts per run. An evenly weighted average of S in each case yielded S = 0.853 ± 0.012.

How are we to judge the merit of this result? The usual answer is to compare it to the

best possible S that could be reached classically (i.e. without using entanglement). Boschi

shows that without entanglement, the best possible S is 0.75, so the experimental results

break the "classical teleportation limit" by eight standard deviations.

CONCLUSION

The BBCJPW protocol is capable– in principle– of teleporting a photon’s polarization

over arbitrarily large distances. Experiments have separately demonstrated all the compo-

nents of the BBCJPW protocol, but no single experiment has reliably teleported an external
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photon’s polarization to another location. It has been shown10 that this deficiency stems

from the fact that it is not possible to perform complete Bell measurements without allowing

the quantum systems involved to interact with each other. The Boschi experiment evaded

this problem by placing the state to be teleported on the EPR pair itself, but at the cost

of being unable to teleport an external photon. Experiments on atoms are easier because

they interact more readily than do photons; in 2004 a team led by M. Reibe successfully

teleported11 a superposition of two of the electronic levels of calcium ions. The BBCJPW

protocol has also been extended12 to systems of arbitrary dimensionality and to systems with

continuous variables13, and the latter has been confirmed14 experimentally.

Quantum teleportation is far from achieving the lofty goal of human transportation set

forth by its namesake in science fiction. To date, only certain degrees of freedom of individual

particles have been successfully teleported; claiming that a single photon has been teleported

in its entirety would require teleporting not only its polarization, but also its frequency,

transverse and longitudinal spatial states, and its k-vector. Scaling the protocol up to

handle molecules, let alone objects containing an Avagadro’s number of atoms, is a daunting

task not only in terms of performing the multitude of Bell measurements, but also in terms of

isolating the object from its environment. In addition, since each Bell measurement produces

at least two bits of classical information, transmitting the amount of information necessary

to reconstruct an object the size of a human body with today’s technology would take longer

than the age of the universe. For the forseeable future, though, quantum teleportation can

be used to link quantum computers, and the fact that the teleported state literally does not

exist between transmitter and receiver can be exploited to send completely secure messages.

References

1W.K. Wootters and W.H. Zurek, Nature (London) 299, 802 (1982).

2C. H. Bennett, et al., Phys. Rev. Lett. 70, 1895 (1993).



12

3Einstein, Podolsky, Rosen, Phys. Rev. 47, 777 (1935).

4J.S. Bell, Physics 1,195 (1965).

5A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

6G. Weihs, et al., Phys. Rev. Lett. 81, 5039 (1998).

7D. Bouwmeester, et al., Nature 390, 575 (1997).

8D. Boschi, et al., Phys. Rev. Lett. 80, 1121 (1998).

9D.Klyshko, Photons and Nonlinear Optics (Gordon and Breach, NewYork, 1988).

10L. Vaidman and N. Yoran, Phys. Rev. A 59, 116 (1999).

11M. Reibe et al., Nature 429, 734 (2004).

12S. Stenholm and P. Bardroff, Phys. Rev., A 58, 4373 (1998).

13L. Vaidman, Phys. Rev., A 49, 1473 (1994).

14S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).


